Part Number Hot Search : 
DAMH9172 MXP4002 PWR1112C B2045 D12000W EDSAC0 L02TB W82C485
Product Description
Full Text Search
 

To Download GA150TS60U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  05/20/02 GA150TS60U "half-bridge" igbt int-a-pak features features features features features v ces = 600 v v ce (on) typ. = 1.7v @v ge = 15v , i c = 150a parameter typ. max. units r jc thermal resistance, junction-to-case - igbt ? 0.28 r jc thermal resistance, junction-to-case - diode ? 0.35 c/w r cs thermal resistance, case-to-sink - module 0.1 ? mounting torque, case-to-heatsink  ? 6.0 n m mounting torque, case-to-terminal 1, 2 & 3  ? 5.0 weight of module 200 ? g thermal / mechanical characteristics ultra-fast tm speed igbt absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 150 i cm pulsed collector current  300 a i lm peak switching current  300 i fm peak diode forward current 300 v ge gate-to-emitter voltage 20 v v isol rms isolation voltage, any terminal to case, t = 1 min 2500 p d @ t c = 25c maximum power dissipation 440 w p d @ t c = 85c maximum power dissipation 230 t j operating junction temperature range -40 to +150 c t stg storage temperature range -40 to +125 benefits .  ultrafast: optimized for high operating frequencies 8-40 khz in hard switching, >200 khz in resonant mode  very low conduction and switching losses  hexfred ? antiparallel diodes with ultra- soft recovery  industry standard package  ul approved  generation 4 igbt technology  increased operating efficiency  direct mounting to heatsink  performance optimized for power conversion: ups, smps, welding  lower emi, requires less snubbing www.irf.com 1 pd - 50056d
GA150TS60U 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 624 937 v cc = 400v q ge gate - emitter charge (turn-on) ? 87 130 nc i c = 94a q gc gate - collector charge (turn-on) ? 212 317 t j = 25c t d(on) turn-on delay time ? 241 ? r g1 = 27 ? , r g2 = 0 ? , t r rise time ? 145 ? ns i c = 150a t d(off) turn-off delay time ? 336 ? v cc = 360v t f fall time ? 227 ? v ge = 15v e on turn-on switching energy ? 6.0 ? mj e off (1) turn-off switching energy ? 12 ? e ts (1) total switching energy ? 19 33 c ies input capacitance ? 14000 ? v ge = 0v c oes output capacitance ? 860 ? pf v cc = 30v c res reverse transfer capacitance ? 180 ? ? = 1 mhz t rr diode reverse recovery time ? 172 ? ns i c = 150a i rr diode peak reversecurrent ? 113 ? a r g1 = 27 ? q rr diode recovery charge ? 9696 ? nc r g2 = 0 ? di (rec) m /dt diode peak rate of fall of recovery ? 2000 ? a/s v cc = 360v during t b di/dt =1300a/s parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 ? ? v ge = 0v, i c = 1ma v ce(on) collector-to-emitter voltage ? 1.7 2.3 v ge = 15v, i c = 150a ? 1.7 ? v v ge = 15v, i c = 150a, t j = 125c v ge(th) gate threshold voltage 3.0 ? 6.0 i c = 750a ? v ge(th) / ? t j temperature coeff. of threshold voltage ? -11 ? mv/c v ce = v ge , i c = 750a g fe forward transconductance  ? 152 ? s v ce = 25v, i c = 150a i ces collector-to-emitter leaking current ? ? 1.0 ma v ge = 0v, v ce = 600v ??10 v ge = 0v, v ce = 600v, t j = 125c v fm diode forward voltage - maximum ? 3.3 ? v i f = 150a, v ge = 0v ? 3.2 ? i f = 150a, v ge = 0v, t j = 125c i ges gate-to-emitter leakage current ? ? 250 na v ge = 20v dynamic characteristics - t j = 125c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
GA150TS60U www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 25v 10 100 1000 1 2 3 v , collector-to-emitter volta g e (v) i , collector-to-emitter current (a) ce c  v = 15v 20 s pulse width ge  t = 25 c j o  t = 125 c j o 1 10 100 1000 5 6 7 8 9 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c  v = 50v 5 s pulse width cc  t = 25 c j o  t = 125 c j o v ce = 25v 80s pulse width 0.1 1 10 100 0 20 40 60 80 100 120 f, frequency (khz) load current (a) for both: duty cycle: 50% t = 125c t = 9 0 c gate drive as specified sink j power dissipation = w 92 6 0% of ra ted vo ltag e i ideal diodes square wave:
GA150TS60U 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 25 50 75 100 125 150 0 40 80 120 160 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 160 1.0 2.0 3.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce  v = 15v 80 us pulse width ge  i = a 75 c  i = a 150 c  i = a 300 c 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 1 th j c t , rectan g ular pulse duration ( seconds ) d = 0.50 s in g le p uls e ( thermal resistance ) thermal impedance - z 0.01 0.20 0.10 0.05 0.02 p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c
GA150TS60U www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 1 10 100 t , junction temperature ( c ) total switching losses (mj) j  r = ohm v = 15v v = 360v g ge cc  i = a 300 c  i = a 150 c  i = a 75 c 0 10 20 30 40 50 10 15 20 25 30 r , gate resistance (ohm) total switching losses (mj) g  v = 360v v = 15v t = 25 c i = 150a cc ge j c r g1 , gate resistance ( ? ) 125c r g1 =27 ? ;r g2 = 0 ? 1 10 100 0 5000 10000 15000 20000 25000 v , collector-to-emitter volta g e (v) c, capacitance (pf) ce  v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c  c ies  c oes  c res 0 100 200 300 400 500 600 700 0 4 8 12 16 20 q , total gate char g e (nc) v , gate-to-emitter voltage (v) g ge  v = 400v i = 94a cc c
GA150TS60U 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - reverse bias soa fig. 13 - typical forward voltage drop vs. instantaneous forward current fig. 14 - typical stored charge vs. di f /dt 0 50 100 150 200 250 300 0 10 20 30 40 50 i , collector-to-emitter current (a) total switching losses (mj) c  r = ohm t = 150 c v = 360v v = 15v g j cc ge 0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 ce safe operating area v , collector-to-emitter volta g e ( v ) a v = 20v t = 125c v measured at terminal ( peak volta g e ) ge j ce r g1 =27 ? ;r g2 = 0 ? 0 4000 8000 12000 16000 500 1000 1500 2000 f di /dt - ( a/ s ) rr q - (nc) i = 300a i = 150a i = 75a f f f r j j v = 360v t = 125c t = 25c 10 100 1000 1.0 2.0 3.0 4.0 5.0 fm f instantaneous forward current - i (a) forward voltage drop - v (v) t = 125c t = 25c j j
GA150TS60U www.irf.com 7 fig. 15 - typical reverse recovery vs. di f /dt fig. 16 - typical recovery current vs. di f /dt 0 100 200 300 500 1000 1500 2000 f di /dt - ( a/ s ) t - (ns) rr i = 300a i = 150a i = 75a f f f r j j v = 360v t = 125c t = 25c 0 40 80 120 160 200 500 1000 1500 2000 i = 300a i = 150a i = 75a f f f di /dt - ( a/ s ) f rrm i - (a) r j j v = 360v t = 125c t = 25c
GA150TS60U 8 www.irf.com t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+ 5 s vce ic dt 90% vge +vge eoff = fig. 18 - test waveforms for circuit of fig. 17, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 17 - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 19 - test waveforms for circuit of fig. 17, defining e on , t d(on) , t r fig. 20 - test waveforms for circuit of fig. 17, defining e rec , t rr , q rr , i rr vd ic dt vce ic dt ic dt vce ic dt
GA150TS60U www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 figure 22. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 21. macro waveforms for figure 17's test circuit
GA150TS60U 10 www.irf.com case outline ? int-a-pak notes:  repetitive rating; v ge = 20v, pulse width limited by max. junction temperature.  see fig. 17  for screws m6.  for screws m5.  pulse width 50s; single shot. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 05/02 9 8 10 11 4 5 7 6 3 2 1 1. al l dime ns ions are s hown in mil l ime t e rs [inch es ]. 2. controlling dimension: millimeter. not e s : 4x f ast on t ab (110) 2.8 x 0.5 [.110 x .020] 3x m5 8 [.314] max. 2x ? 6.80 6.20 [ .267 .244 ] 4.50 3.50 [ .177 .138 ] 32.00 31.00 [ 1.260 1.220 ] 24.00 23.00 [ .945 .906 ] 30.50 29.00 [ 1.201 1.142 ] 92.10 91.10 [ 3.626 3.587 ] 8.00 6.60 [ .315 .260 ] 8.65 7.65 [ .341 .301 ] 94.70 93.70 [ 3.728 3.689 ] 2x 23.50 22.50 [ .925 .886 ] 80.30 79.70 [ 3.161 3.138 ] 17.50 16.50 [ .689 .650 ] 42.00 41.00 [ 1.654 1.614 ] 34.70 33.70 [ 1.366 1.327 ] 2x 13.30 12.70 [ .524 .500 ] 0.15 [.0059] conve x


▲Up To Search▲   

 
Price & Availability of GA150TS60U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X